
Differences in Inter-App Communication
Between Android and iOS Systems

JCSEM December 2018

Aimun Khan Seth Lee Jiawei Wang
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, Texas

Abstract— Mobile applications have evolved beyond being
individual processes used to complete isolated tasks. Today,
many applications operate cohesively to complete more complex
tasks and offer users broad services. Individual applications
behave as modules in the user’s overall experience in completing
a task. For example, travel apps, payment apps, and social
media apps all behave seamlessly throughout a user’s singular
vacation experience. Inter-app communication acts as a bridge
between isolated processes to provide functionality to others,
and given the paradigm shift in mobile applications, this tool
has become increasingly significant as a mechanism to enable
these complex processes.

This paper aims to compare inter-app communication be-
tween iOS apps to that of Android. Currently, there is much
research that uses Android as a platform for testing and
analysis, but comparatively little research regarding iOS as a
platform. There is particularly very little research on iOS in the
context of inter-app communication. Analysis of the differences
between these two platforms will give us insight into the
strengths and limitations of inter-application communication in
different contexts, which contributes to research regarding the
differences in design choices of inter-application frameworks.

I. INTRODUCTION

Third-party applications are one of the most defining
features of smartphones. They enable the user to customize
their smartphone experience to their particular needs, allow-
ing the developers of mobile operating systems to focus
on maintaining core operating system features instead of
many pre-installed apps for all use cases. Instead of being
built into the operating system, many applications today are
designed and maintained by developers who can better focus
on making a wide variety of apps for specific needs.

For security reasons, it is important that applications on
a mobile device are isolated. Malicious applications should
not be able to compromise the operating system or sensitive
user data on other apps [3]. However, enabling some level
of safe communication between applications is important.
Apps are powerful because they are modular. Instead of being
forced to start from scratch, developers are able to build off
of existing functionality in other apps, creating a seamless
user experience.

Inter-app communication protocols bridge this gap be-
tween allowing applications to be isolated from each other
and enabling applications to share data. Applications are
able to remain isolated while being able to handle specific

queries from other applications, enabling them to seamlessly
integrate with existing features of those other apps [10].
Inter-app communication mechanisms enable developers to
allow other applications limited access to resources in their
application. Android apps contain several different compo-
nents that form the entire application, including activities
that represent each screen with a user interface, services
that run in the background, broadcast receivers that listen
to system events to provide specific functionality for ap-
plications, and content provider that stores the data. These
different components are usually defined inside a manifest
file. Inter-app communication occurs when these components
of different applications need to transfer data or open a new
activity. Android implements this using intents to request
other applications to carry out certain operations.

Compared to Android development, iOS applications are
considerably more restricted in their permissions. Apps are
viewed as isolated containers with minimal privileges [12].
These containers are referred to as sandboxes, and they
require explicit permission to use services outside of the app
(e.g. camera, microphone, etc). Sandboxing applications also
prevent apps from writing to parts of the file system that
they should not be allowed to [11]. Given iOS’s emphasis
on isolation of applications, URL schemes are the only
way to send queries to different containers. These URL
schemes somewhat have the same goal as Android intents to
enable inter-app communication, but the way that this goal
is accomplished by iOS is different than Android.

Currently, many papers use Android as a starting point
for research on mobile development, but there is compar-
atively little existing research on iOS development. There
is particularly little existing comparative analysis between
the two mobile operating systems, especially in the context
of inter-app communication. This paper aims to contrast the
differences in implementation of inter-app communication in
Android and iOS to explore the different design choices in
the operating systems. Section II describes the implemen-
tation of inter-app communication in Android and in iOS.
Section III describes the apps that we implemented to test
and compare Android and iOS implementations of inter-app
communication. Section IV is a summary of our findings.
Section V analyzes those findings. Section VI examines
threats to the validity of our findings. Section VII briefly



Fig. 1. Categories of intents and how operating system analyzes them

summarizes related work that we found during our research.
Section VIII discusses potential areas of future research
related to our findings.

II. IAC OF TWO PLATFORMS

A. Implementation of IAC in Android

Each component in an Android application has specific
tasks that compose the application when they communicate.
The user interface, or activity, allows the user to make
requests to the application to perform tasks such as playing
music or viewing a picture. When a user makes a request
that requires the application to transition to another interface
or activity, Android applications use Intents to define this
action’s intent to do something. Intents allow the system
to make requests to tasks both in the current app as well
as other apps. Intents become the interface for different
activities to communicate with each other to complete larger
processes. Those processes become the interface for different
applications to communicate with each other [4].

As shown in Figure 1, intents are divided into two types:
implicit intents and explicit intents. Whenever developers
create new intents, they have to decide whether to manually
set component and activity names to this intent. If an intent is
assigned to a specific component, the operating system will
start the component directly. These types of intent are called
explicit intents. However, if there is no specific component
assigned to an intent, the Android OS will search all the
applications for intent filters to determine where to send this
intent. If there is only one component that accepts this type
of intent, the Android system will launch that component
directly. Otherwise, the system prompts the user to decide
which component to send the intent to. These types of intents
are called as implicit intents.

An Intent is a very common object that been used to
communicate between different components. The basic in-
struction of an intent is to launch or deliver data to other
components. As a message delivery object in Android, the
most critical part of an intent is its content. Android OS will

decide what to do with an intent based on what combination
of the different categories of information it contains. Figure
2 shows each parameter of an intent is optional [6].

Component name is necessary information for explicit
intents. When component name is set, the intent will forward
directly to the designated component.

Action defines the operations that a component carries
out when it receives the intent. For example, in a photo
app, the main action is to display a photo. Normally, the
most common intent action is the system default action.
The default components can react to these action such as
ACTION VIEW and ACTION SEND.

Data is an optional setting for an intent. It contains URI
object and mime type. The former indicates the location of
the pending data; the latter indicates the data type. Mime
type is a very useful parameter for an implicit intent to find
its best component. For instance, ACTION VIEW is able to
response with lots of different activities. Setting the mime
type to image/jpeg or video/mp4 helps to better locate
the components.

Category is a string that contains the type components that
are able to receive this intent.

These first four parameters mentioned above determine
how Android will respond to and resolve the intent. There
are two additional parameters considered optional that do not
affect how Android analyzes and resolves the intent.

Extra contains information inside an intent for an action
to use to complete its operation. This is the most common
way for two components to communicate. Developers can
easily create a Bundle object that contains the key-value
information inside an extra to insert into an intent. Instead of
passing Bundle objects, developers can also make their own
objects Serializable and Parcelable in order to put
them in intent.

Flag indicates how Android OS launches activities. For
example, the flag can tell the system which task this activity
belongs to and what to do after the intent is launched.

Content Provider is one of the most significant Android



Fig. 2. Parameters inside of intents

components and is used to encapsulate data, providing it to
other applications. An intent functions as a bridge to transfer
data from different components, while a Content Provider
is used to expose data to other apps [8]. When users want
to open a certain file in a certain app, Android OS uses
FileProvider, which is a subclass of Content Provider, and
grants the app permission by calling the Intent.setFlags()
method. These permissions are only available as long as the
stack for receiving activity is active. Because the permis-
sions are temporary, using content URI is safer than using
file:// URI. Using file:// URI requires modifying
the permissions of the underlying file and exposing these
permissions to every other app, which breaks the security
principle of least privilege. Thus, the increased security level
offered by content URI is a key factor of Android security
infrastructure.

B. Implementation of IAC in iOS

Swift app development for iOS uses a URL scheme
for inter-app communication. Each app has a URL that
other apps can use to make requests by passing queries
to the app via the URL, which can only contain ASCII
characters [9]. The URL contains argument information
for a predefined URL scheme. For example, the URL
tel://1234567890 would launch the phone app and call
the number 1234567890. This URL scheme is similar in
functionality and implementation to explicit intents in the
Android SDK. However, there is not a Swift equivalent to
implicit intents. There are two types of URL schemes: built-
in handlers for functions like mailto, maps, and sms; and
custom handlers made by app developers.

With custom handlers, app developers can define a pro-
tocol to parse the query in the URL scheme. The system
calls the application’s openURL method to check the URL
and launch the application to do a specific predefined task
specified by the query, as shown in figure 3. If the app is
already running in the background, it is simply moved to the
foreground to open the URL, as shown in figure 3.

Fig. 3. Launching an app to open a URL

III. EXPERIMENTS

A. Design of test apps

We designed and implemented two basic apps to commu-
nicate with each other in order to compare the Android and
iOS implementations of inter-app communication1.

Our first test app allows a user to select their favorite
color out of a predetermined list of colors. Our second app
displays the name of a color. Pressing a button on the first
app opens the second app and changes the color to the user’s
favorite color. This simple design allows us to contrast the
differences in implementation between Android and iOS for
sending the favorite color information from app 1 to app 2.
Also, by implement this simple app by ourselves, we can get
a direct sense of user interface intuitiveness from the coding.

In order to compare the performance of inter-app com-
munication in Android and iOS, we performed another test
by calculating the latency in time by Android and iOS in
launching from one app to another. We measured latency
passing different sizes of data from one app to another.

B. Implementation of Android apps

For our Android experiment, we used Android SDK 25
to compile all our code, which ran on Android 9.0. Our
applications were run on an emulator which has a Nexus 5X
system Android phone with Android API version 28.

We designed two apps that used intents to pass data from
the first app to the second. The first app contained buttons
corresponding to various colors. Clicking a color triggers
the onClickListener() method, which creates an Intent

1https://github.com/AimunKhan/JCSEM-2018-IAC



and sets parameters on this intent to call another app in the
system.

Here we used two different implementations of intents.
The first method is an explicit intent. A component name
is assigned to the intent so that when intent is launched,
Android OS is able to locate the activity. The second imple-
mentation is an implicit intent, which only set the action of
this intent and let Android system decide which component
to launch.

Next, we designed a simple test to calculate the latency
time of the launch action. By printing timestamps before
the intent is called and then after the second activity is
created, we can get the time difference to approximate the
performance of inter-app communication in the operating
system. We also measured the latency by setting different
sizes of data into our intent to evaluate their performance.

Fig. 4. When user clicks their favorite color in the first activity, the system
launch another app and open the activity that receive this intent and open it

C. Implementation of iOS apps

For our Swift experiment, we used iOS version 11.2 and
tested the applications on an iPhone 8 Plus emulator built
into XCode.

We designed a set of iOS apps to mimic the functionality
of the Android apps, making the implementation as close
as possible to the Android implementation. The iOS imple-
mentation of our color apps is similar to the explicit intent
implementation in Android. Pressing a button on the first app
sends this data to the second app via a URL invocation. When
the button is pressed by the user, the second app is called via
the URL MobileComputingApp2://\(favecolor),
where favecolor is one of four strings chosen by user input.
App 1 opens this URL, and a handler in the second app
processes the query “favecolor”. Based on the selected color,
the RGB values and context of a displayed text message
changes on open.

We also calculated the latency between pressing the button
and the color change taking place using the system clock of
the iPhone (iPhone 8 Plus emulator). We printed the time at
button press before the URL is constructed or processed, as

Fig. 5. The iOS apps have the same functionality as the Android apps

well as the time right after the second app is launched and
rendered.

IV. RESULTS

A. Observation on Android

Using explicit intents, our Android apps had a latency
of 0.2340 seconds on average between the time the button
was pressed on the first app and the time the second app
opened and started to render, assuming the second app was
not currently running. If the second app had already been
launched, the latency dropped to 0.0320 seconds on average.

In contrast, using implicit intents, the Android apps had
a latency of 0.4300 seconds on average when the app was
not launched, and 0.0910 seconds on average when the app
had already been started. This difference is intuitive and
reasonable because Android OS has to spend more time on
finding the right activity to start when an implicit intent is
called instead an explicit intent.

We also noticed that Android’s launch sequence for open-
ing the second app changed when setting a different flag into
the intent. For example, the app created a new task and added
this new activity to the top of the history stack when the
flag was set to FLAG ACTIVITY NEW TASK. When we did
not assign a specific FLAG to the intent, the activity would
directly show in the current app and write to the current
history instead.

We found some interesting results when sending dif-
ferent sizes of data using intents. Android has a data
transfer limitation for intent. If the data you being
transferred is larger than 1MB, Android will throw a
TransactionTooLargeException. The mechanism
behind this is that Android OS is trying to store the Parcel
objects in the Binder transaction buffer, and this buffer is
shared by all transactions in progress. Thus, comparing time
consumption between different sizes of data becomes an
impossible task; there is no significant difference in latency



between passing 10KB and 1MB data because there is not a
significant enough size difference between these intents.

TABLE I

Latency (seconds) Explicit Intent Implicit Intent URL Scheme
Initialize app 0.2340 0.4300 0.2150
Already open 0.0320 0.0910 0.0470

Fig. 6. URL scheme had slightly lower latency than explicit intents, while
implicit intends had much higher latency than the other options

B. Observation on iOS

The iOS applications had a latency of 0.2150 seconds
between the time the button was pressed on the first app
and the time the second app opened and rendered. If app 2
was already open, the latency was 0.0470 seconds. This had
a lower latency than the Android app.

We hypothesize that this is because iOS is more isolated
and has less running background processes for each app like
implicit intents, so data transfer is marginally faster. We also
suspect that because iOS development is more limited in
the type of data that can be sent between apps, opening a
URL may be marginally more optimized for transfer speeds
compared to Android intents.

In regard to iOS URLs, because data is passed via query
in a URL, the size of the transfer does not scale significantly
with the size of the string.

V. ANALYSIS

A. Performance

Although the latency between apps on Android and iOS
are fairly similar, iOS is marginally faster. Implicit intents are
much slower than explicit intents, which makes sense given
that implicit intents are more passive than explicit ones. The
advantage of implicit intents is that the application does not
need to know what app it is opening to handle a request,
e.g. it does not know what maps app the user prefers, so it
sacrifices performance for flexibility.

As for transferring big data in Android, since Android
OS right now is not able to handle data that is larger than
1MB, there are typically two ways to handle this situation.
The first way to do so is to write the data that developer

wants to transfer inside a temporary file or a database system.
When developer pass the intent, they store the path of the
data. After Android 7.0, To share files between applications,
developer should send a content:// URI and also grant
a temporary access permission on the URI. Content URIs
with temporary UTI access permissions are secure because
they apply only to the app that receives the URI, and they
will expire automatically [7].

The component that accepts this intent will have to read
the data from the temporary file or database. The disadvan-
tage of this method is that Android OS will have to spend
more time on reading and writing files which leads to a low
efficiency. Developers can also store their data inside a static
class (the component that you want to send the intent to
must belong to the same process because static data is only
allowed to be shared in the same process). This helps a lot
when developers want to communicate inside the same app,
but it can only be applied on the same process.

Swift applications have processes similar to the doc-
ument controller to send files between apps, includ-
ing build-in apps and processes. iOS has built-in han-
dlers called the UIActivityViewController and
UIDocumentInteractionController. These han-
dlers provide support and manage sending of data such as
pictures or documents between apps. The data is staged in
this built in handler and accessed from another app via the
same handler. When sharing files, iOS does not create an
object for the file, but it does share a URL that points to
the file. These controllers allow direct users to shared files
and allow users to interact with them. Because these files
are shared via built-in controllers, there are limited types
of files that can be shared. However, use of these controllers
increases the security of iOS inter-app file sharing by limiting
the ability malicious files to be sent to other apps.

B. Security Threats to Android IACs

Apps in smartphones are regarded as isolated entities
and they have private storages other apps can not access.
However, IACs act as a bridge between apps, passing and re-
ceiving messages. Malicious apps exploit IAC mechanisms to
trick components into performing unwanted actions, or hijack
the message sent to a trusted component. Attack strategies for
Android and iOS share a common idea, distinctive schemes
have manifested as their design philosophies differ.

1) Intent Spoofing: Implicit intents can be received from
any application that has a matching intent filter. In other
words, activities that are started by implicit intents can al-
ways be started by any other apps as long as intent filters are
defined accurately. The specifications of an implicit filter can
easily be copied from Android manifest file in any Android
APK. This is an extremely useful feature in Android, as
developers can build more expandable apps. However, it can
be abused to pose a threat to Android’s security model [5].
Intent spoofing is an attack where an exported component
receives an intent from unexpected source. As a real-world
example, we analyzed the APK file of Amazon app and built
an app that starts an activity for uploading data to Amazon



Cloud. If Amazon app does not authenticate the data, then its
data storage in Cloud is open to a threat. That is, any activity
that are started by implicit intents prone to injection attacks.
In order to prevent this, a developer shouldn’t assume that
an activity always gets intents from benevolent senders, and
they cannot rely on intent filters for securing components. It
is recommended not to export a component if it is only for
internal use. If an exported component performs operation on
data that needs to be secured, a developer should authenticate
a received intent to check if it has been sent from reliable
application.

2) Intent Interception: The characteristic of implicit in-
tents makes it particularly vulnerable for activity hijacking.
Activity hijacking is done through a malicious activity de-
signed to hijack an intent instead of an intended activity.
For instance, if a mobile payment service starts a pay-
ment activity with implicit intent when a user, a malicious
activity can intercept the intent and hijack sensitive data.
IntentIntercept is an app that attempts to intercept as many
implicit intents as possible. It has a long list of intent
filters in its xml file and provide details of contents in an
intercepted intent. With similar methods a malicious app can
reveal sensitive data in intents by intercepting them between
activities. However, intercepting an implicit intent is not
always successful. When there are multiple applications that
matches the implicit intent for an action, a user is prompted
to select an application to start an activity, unless there is a
default activity. Malicious apps usually disguise itself as a
proper app to handle the action. Therefore, a user plays an
important role in securing their own Android phone. Since
many Android apps share implicit filters that are used to
perform common tasks (i.e. creating an alarm, playing a
media file, or opening a camera app), there are numerous
implicit intents attackers can abuse to perform malevolent
behaviors.

C. Security Threats to iOS

Even though iOS has restricted options and functionalities
to communicate between apps compared to Android, security
vulnerabilities still exist. Moreover, due to its closed nature,
there are only a few public research for developers to refer to,
especially regarding IACs. Attackers exploit poorly designed
URL scheme logic to run an app without user’s attention
and to gain access to extract private information. Similar to
Android, the registered URL scheme for any app is open to
the public and can be acquired by opening plist file of an
app package, which is iOS’s equivalent of manifest file. An
attacker can gain information on how an URL is handled, and
come out with a malevolent string that will make an app to
perform unwanted operations. If an attacker can lure a user to
open a webpage with a script that calls an URL, the app will
be launched from a web browser, sometimes even without
asking the user’s consent to do so. A popular example is
the vulnerability of the older version of Skype [13]. When
an URL skype://0000000000?call is called, Skype
app starts a call without user’s validation. The vulnerability
still exists even if a user is prompted to choose whether they

want to open an app or not. As the responsibility to filter
malicious apps falls into users’ hands, they have to be extra
careful when accessing websites that can’t be trusted.

VI. THREATS TO VALIDITY

One threat to external validity is the generalizability of
our experiment to other apps. Our apps test inter-app com-
munication by sending information about a favorite color.
Other apps may have different performance and security
vulnerabilities based on how different they are from our app.
We attempted to make this app as general as possible to avoid
this threat to validity.

One threat to internal validity is the difference in size
between the Android app and iOS app. The Android apps are
1.96 MB and 1.94 MB, while the iOS apps are only 330 KB
and 250 KB. This is significant because larger apps may take
longer to open, so it affects our comparison of IAC latencies
between the Android and iOS implementations of our app.
There also may be differences in the speed of the Android
and iOS emulators used to test latency.

Regarding to the results of our experiments, the
test results are generated and calculated by using
System.out.println() in java and print() in
Swift. Those two statements are both relatively slow I/O
statement which may take time to print things on the console
which might lead to different results. While this happens
mainly due to the different operating system of Android
and iOS. By trying to compare them with the performance,
there is some mechanism behind them that can lead to a
uncertainty results.

VII. RELATED WORK

The analysis of Android and iOS inter-app communication
each is a hot topic. But there is not really enough research
on the compression and security analysis difference between
Android and iOS. The Comparison of Inter-Application
Communication Mechanisms in Mobile Operating Systems
[2] have some part relating to the comparison of inter-app
communication of different platforms. But what they focused
on basically is only the simple usage and functionality differ-
ence between them. There is not really much about security
and performance. In that paper, a comparison is carried out
on the existing mechanisms for inter-application communica-
tion of different platforms including Android, iOS, Windows
Phone and Blackberry. An existing limitation of current inter-
app communication, which is the communication between
cross-platform devices, was mentioned. They proposed an
approach which is a framework for other systems to work
together.

Another paper, Inter-app Communication in Android: De-
veloper Challenges [1], talks more about how apps commu-
nicate with each other in Android platform. It introduced the
Android platform-defined message mechanism. Specifically,
they go through the third-party-contributed message types
to mention about the obstacles for developers to attempt
to use, which emphasize more on the aspect of developer



perspectives and developing process not the design and
mechanism of Android itself.

As for security of Android inter-app application, Ana-
lyzing inter-application communication in Android [5] try
to analyze the security and data violation issues that could
happen due to the various inter-app message passing system.
They examined Android application interaction and came up
with a tool named ComDroid which is a tool to detect the
vulnerabilities that an app can be attacked by an intent-base
invasion.

VIII. FUTURE WORK

We have explored the performance and security aspects
of the inter-app communication between Android and iOS.
This has been the focus of the paper. A future deep dive into
the security and performance differences between these two
platforms may focus on the architecture and message delivery
mechanisms. Since we have found a lot of mechanisms that
are common, such as URI schema and security patterns,
research on cross-platform application communication can
build off of our findings. Additionally, we hope to continue
our investigation by analyzing malware that makes use of
security vulnerabilities in Android and iOS to gain more
insight on securing IAC mechanisms.

IX. CONCLUSIONS

Android and iOS have different inter-app communication
schemes. Android uses intents while iOS uses URL schemes
to handle queries between apps. We have explored differ-
ences between Android and iOS in implementing inter-app
communication by designing test apps to compare implicit
intents, explicit intents, and URL schemes. We found that
URL schemes have slightly lower latency compared to ex-
plicit intents, but iOS does not have an equivalent mechanism
to implicit intents. Securing IAC mechanisms remains one
of the most important challenges in the realm of mobile
security. Spoofing attacks can be carried out on both Android
and iOS apps, although attackers have fewer options for iOS.
Intercepting a message is non-trivial for iOS but can easily
be done on Android because of its design. Future research
may focus on differences between Android and iOS to design
solutions to these security issues.

REFERENCES

[1] Waqar Ahmad, Christian Kästner, Joshua Sunshine, and Jonathan
Aldrich. Inter-app communication in android: Developer challenges. In
Mining Software Repositories (MSR), 2016 IEEE/ACM 13th Working
Conference on, pages 177–188. IEEE, 2016.

[2] Kalaiselvi Arunachalam and Gopinath Ganapathy. The comparison
of inter-application communication mechanisms in mobile operating
systems. 2015.

[3] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, Phillipa Gill, and
David Lie. Short paper: a look at smartphone permission models.
In Proceedings of the 1st ACM workshop on Security and privacy in
smartphones and mobile devices, pages 63–68. ACM, 2011.

[4] Hamid Bagheri, Joshua Garcia, Alireza Sadeghi, Sam Malek, and
Nenad Medvidovic. Software architectural principles in contemporary
mobile software: from conception to practice. Journal of Systems and
Software, 119:31–44, 2016.

[5] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner.
Analyzing inter-application communication in android. In Proceedings
of the 9th international conference on Mobile systems, applications,
and services, pages 239–252. ACM, 2011.

[6] Android Developers. Intents and intent filters, 2018.
[7] Android Developers. Sharing files, 2018.
[8] Android Documentation. Fileprovider, 2018.
[9] App Programming Guide for iOS. Inter-app communication, 2017.

[10] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, and
Yves Le Traon. Apkcombiner: Combining multiple android apps to
support inter-app analysis. In IFIP International Information Security
Conference, pages 513–527. Springer, 2015.

[11] Charlie Miller. Mobile attacks and defense. IEEE Security & Privacy,
9(4):68–70, 2011.

[12] Ibtisam Mohamed and Dhiren Patel. Android vs ios security: A com-
parative study. In Information Technology-New Generations (ITNG),
2015 12th International Conference on, pages 725–730. IEEE, 2015.

[13] Min Zheng, Hui Xue, Yulong Zhang, Tao Wei, and John Lui. Enpublic
apps: Security threats using ios enterprise and developer certificates. In
Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security, pages 463–474. ACM, 2015.


